Технические условия: ТЦАФ.755410.001ТУ (ОТК).

Предназначены для эксплуатации в качестве встроенных элементов внутри комплектных изделий для выделения требуемого спектрального диапазона в интервале длин волн от 2 до 20 мкм и комплектации оптической и оптикоэлектронной аппаратуры, инфракрасных оптоэлектронных компонентов.

Основные области применения фильтров:

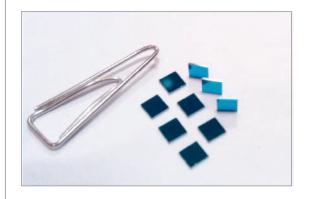
- тепловизионная аппаратура и ИК термометры;
- NDIR -сенсоры и приборы на их основе: газоанализаторы, извещатели газовые, сигнализаторы утечки вредных и взрывоопасных газов;
- приборы для обеспечения пожаро- и взрывобезопасности промышленных объектов и на транспорте;
- приборы для метеорологии и экологического мониторинга;
- пиргелиометры для сельского хозяйства (тепличное хозяйство);
- специальные приложения.

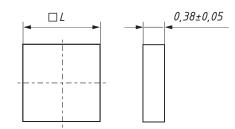
Тип фильтра	Сокращенное обозначение	Конструктивное исполнение	
Блокирующий коротковолновый (отрезающий)	БК	А, Б	
Блокирующий длинноволновый	БД		
Узкополосный	У	A F D	
Полосовой	П	А, Б, В	

Примечания

- 1. К блокирующим фильтрам относят фильтры, пропускающие излучение с длиной волны, большей (блокирующие коротковолновые) или меньшей (блокирующие длинноволновые) установленного предела.
- 2. К узкополосным и полосовым фильтрам относят фильтры, пропускающие излучение в спектральном диапазоне, ограниченном как со стороны коротких, так и со стороны длинных волн. При этом фильтры, ширина полосы пропускания которых на уровне 0,5 · Tmax полуширина не более 0,25 · λ max, определяют как узкополосные, а фильтры, полуширина полосы пропускания которых более 0,25 · λ max как полосовые.

Вид оптических покрытий	Тип оптических покрытий
Фильтрующие	На одну длину волны Широкополосные (ахроматические) многодиапазонные
Полученные методом вакуумного испарения	Полученные резистивным методом Полученные электронно-лучевым методом
Многослойные	Многослойные с некратными толщинами Многослойные с кратными толщинами
Диэлектрические	Селениды Серниды Теллуриды
	оптических покрытий Фильтрующие Полученные методом вакуумного испарения Многослойные

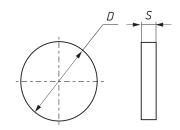

Интервал рабочих температур, °С	-60 +70
Наработка, ч, не менее	5 000
Срок сохраняемости, лет, не менее	15
Климатическое исполнение	УХЛ 2.1 по ГОСТ 15150.
Повышенная относительная влажность при 25 °C, %	98


E-mail: 5526057@giricond.ru www.giricond.ru Teл.: (812) 247-14-50

Вариант конструкции фильтра

Подложка *квадратной* формы, с двух сторон которой способом осаждения в вакууме нанесены многослойные тонкопленочные оптические интерференционные покрытия

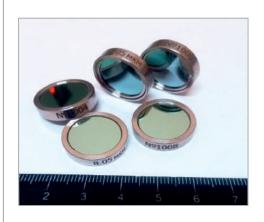
«А» (БК, БД, У, П)

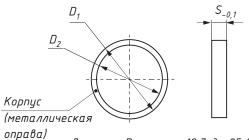


Сторона квадрата L, мм: от 2 до 50.

Подложка *круглой* формы, с двух сторон которой способом осаждения в вакууме нанесены многослойные тонкопленочные оптические интерференционные покрытия

«Б» (БК, БД, У, П)

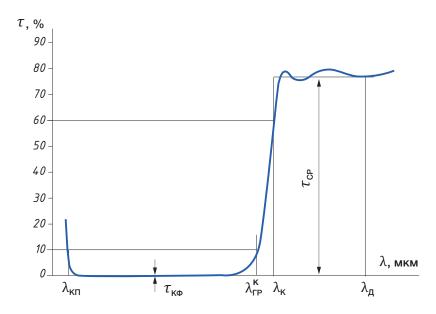




Диаметр D, мм: от 5 до 80. Толщина S, мм: от 0,35 до 15.

Собранные в оправы две или три подложки круглой формы, на каждой из сторон которых способом осаждения в вакууме нанесены многослойные тонкопленочные оптические интерференционные покрытия.

«В» (У, П)



Диаметр D_η , мм: от 12,7 до 25,4. Диаметр (световой) D_{2^*} мм: от 8,7 до 21,4. Толщина S, мм: 4,5, 6.

Фильтры предназначены для ручной установки в аппаратуру.

Параметры спектральных характеристик БК (блокирующих коротковолновых) фильтров

Обозначение	Обозначение	Буквенное обозначение параметра, норма параметра, единица измерения						
конструктивного спектрального исполнения диапазона	λ ^κ , мкм	λ _д , мкм	К _Р , не менее	λ _{кп} , мкм, не более	$ au_{\mathrm{CP}},\%,$ не менее	τ _{кФ} , %, не более		
A =	1	2,0 4,5	3,5 6,0	0,95	1.0	75	0.5	
А, Б	2	4,5 10,0	6,0 13,0		0,95	0,95	1,0	65

Примечание: - В условном обозначении при заказе указывают:

- конкретные значения $\lambda_{\Gamma P}^{\kappa}$, $\lambda_{\underline{\Pi}}$ из диапазонов, указанных в таблице;
- значения допускаемых отклонений $\lambda_{\Gamma P}^{K}$, λ_{Π} (мкм), требуемые потребителю.

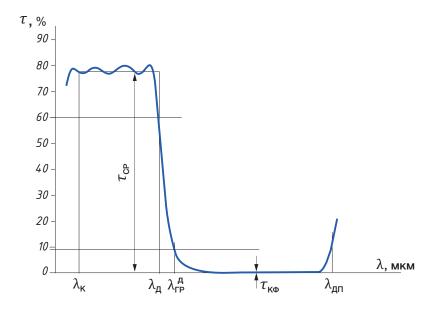
 $(\lambda_{\rm K} - \lambda_{\rm J})$ – рабочий спектральный диапазон, где $\lambda_{\rm K}$ и $\lambda_{\rm J}$ – коротко- и длинноволновая граница рабочего спектрального диапазона, уточняемые при заказе, при этом $\lambda_{\rm K}$ равна значениям длины волны на коротковолновой границе пропускания, соответствующей значению коэффициента пропускания 60 %;

 au_{CP} – среднее значение коэффициента пропускания в рабочем спектральном диапазоне, определяемое как среднее арифметическое значение коэффициента пропускания в диапазоне (λ_{κ} - λ_{n});

 $\lambda_{\Gamma P}^{K}$ - коротковолновая граница пропускания, определяемая значением длины волны, соответствующей значению коэффициента пропускания τ = 10 % на коротковолновом фронте рабочего спектрального диапазона;

 K_P - крутизна коротковолновой границы пропускания, определяемая значением отношения $\lambda_\mathsf{\Gamma P}^\mathsf{K}$ к λ_K ;

 $\lambda_{\text{KП}}$ – параметр, определяемый как значение длины волны, соответствующей значению τ = 10 % и приходящийся на длинноволновый фронт коротковолновой полосы пропускания второго порядка интерференции;


 $au_{\text{K}\Phi}$ – коэффициент пропускания в коротковолновой области подавления (блокировки) мешающего излучения (фон). Задается в виде предельно допустимого среднего арифметического значения коэффициента пропускания в спектральном диапазоне (1,1 · $\lambda_{\text{K}\Pi}$ - 0,9 · $\lambda_{\text{\GammaP}}^{\text{K}}$);

 Δau_{CP} – изменение среднего значения коэффициента пропускания;

 $\Delta au_{\mathsf{K}\Phi}$ – изменение коэффициента пропускания в коротковолновой области подавления (блокировки) мешающего излучения (фон).

E-mail: 5526057@giricond.ru www.giricond.ru Teл.: (812) 247-14-50

Параметры спектральных характеристик БД (блокирующих длинноволновых) фильтров

Обозначение	Обозначение	Буквенное обозначение параметра, норма параметра, единица измерения							
конструктивного спектрального исполнения диапазона	$\lambda_{\Gamma P}^{A}$, мкм	λ _κ , мкм	К _Р , не более	λ _{дп} , мкм, не менее	$ au_{\mathrm{CP}},$ %, не менее	τ _{дФ} , %, не более			
A E	1	3,0 6,0	2,0 4,0	1.05	5,0	75	0.5		
А, Б	2	6,0 13,0	4,5 10,0	1,05	1,05	1,05	10,0	65	0,5

Примечание: - В условном обозначении при заказе указывают:

- значения допускаемых отклонений $\lambda_{\Gamma P}^{A}$, λ_{K} (мкм), требуемые потребителю.

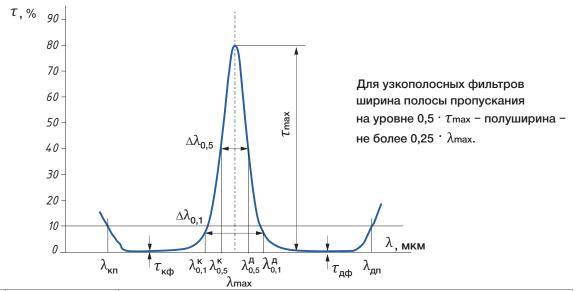
 $(\lambda_{\rm K}$ - $\lambda_{\rm Z})$ – рабочий спектральный диапазон, где $\lambda_{\rm K}$ и $\lambda_{\rm Z}$ – коротко- и длинноволновая граница рабочего спектрального диапазона, уточняемые при заказе, при этом $\lambda_{\rm Z}$ равна значениям длины волны на длинноволновой границе пропускания, соответствующей значению коэффициента пропускания 60 %;

 \mathcal{T}_{CP} – среднее значение коэффициента пропускания в рабочем спектральном диапазоне, определяемое как среднее арифметическое значение коэффициента пропускания в диапазоне (λ_{K} - $\lambda_{\text{Л}}$);

 $\lambda_{\text{гр}}^{\text{H}}$ – длинноволновая граница пропускания, определяемая значением длины волны, соответствующей значению коэффициента пропускания τ = 10 % на длинноволновом фронте рабочего спектрального диапазона;

 K_P – крутизна длинноволновой границы пропускания, определяемая значением отношения $\lambda_\mathsf{\Gamma P}^\mathsf{H}$ к λ_G ;

 $\lambda_{\text{дп}}$ – параметр, определяемый как значение длины волны, соответствующей значению τ = 10 % и приходящийся на коротковолновый фронт полосы пропускания первого порядка интерференции;


 au_{DD} – коэффициент пропускания в длинноволновой области подавления (блокировки) мешающего излучения (фон). Задается в виде предельно допустимого среднего арифметического значения коэффициента пропускания в спектральном диапазоне (1,1 \cdot $\lambda_{\Gamma P}^{R}$ - 0,9 \cdot λ_{DD}).

 Δau_{CP} – изменение среднего значения коэффициента пропускания;

 $\Delta au_{ extsf{д}\Phi}$ – изменение коэффициента пропускания в длинноволновой области подавления (блокировки) мешающего излучения (фон).

E-mail: 5526057@giricond.ru www.giricond.ru Teл.: (812) 247-14-50

Параметры спектральных характеристик У (узкоплосных) фильтров

Обозначение	Обозначение	Буквенное обозначение параметра, норма параметра, единица измерения						
конструктивного спектрального диапазона	λ _{max} (λ _{CP}), мкм	$ au_{ m max}$, ($ au_{ m CP}$), %, не менее	Δλ _{0,5} , мкм	Δλ _{0,1} , мкм	λ _{кп} , мкм, не более	λ _{дп} , мкм, не менее	τ _{кФ} , τ _{дФ} , %, не более	
A E	1	2,4 4,5	70	0,06 1,0	0,1 1,5	1,0	3,5	0.5
А, Б	2	4,5 12,0		0,06 3,0	0,1 4,5	5,0	6,0	0,5
В	_	7,0 13,0	50	0,1 0,2	0,2 0,4	1,0	9,0	1,0

Примечание: - В условном обозначении при заказе указывают:

- конкретные значения λ_{CP}), $\Delta\lambda_{0.5}$, $\Delta\lambda_{0.1}$ из диапазонов, указанных в таблице;
- значения допускаемых отклонений λ_{\max} (λ_{CP}), $\Delta\lambda_{0,5}$, $\Delta\lambda_{0,1}$ (мкм), требуемые потребителю.

 λ_{max} – длина волны, соответствующая максимальному значению коэффициента пропускания в рабочей полосе пропускания;

 T_{max} – значение коэффициента пропускания в максимуме;

 $\lambda_{\rm CP}$ – длина волны центра рабочей полосы пропускания, определяемая как $\lambda_{\rm CP} = (\lambda_{0.5}^{\rm K} + \lambda_{0.5}^{\rm A}) / 2;$

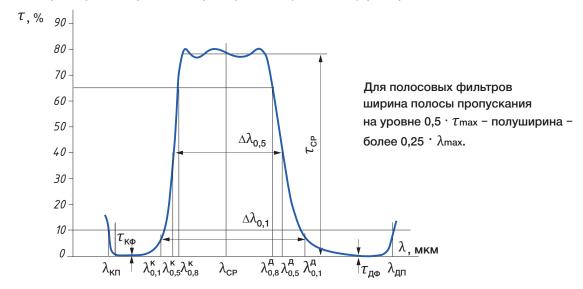
 au_{CP} – среднее значение коэффициента пропускания в рабочей полосе пропускания, определяемое как среднее арифметическое значение коэффициента пропускания в диапазоне длин волн $\lambda_{0,8}^{\text{K}}$ и $\lambda_{0,8}^{\text{Q}}$, соответствующих значениям $au = 0.8 \cdot au_{\text{max}}$ на коротко- и длинноволновой границах рабочей полосы;

 $\lambda_{0,5}^{K}$ и $\lambda_{0,5}^{\mathcal{A}}$ – длины волн, соответствующие значению τ = 0,5 · au_{max} на коротко- и длинноволновой границах рабочей полосы;

 $\lambda_{0,1}^{\mathsf{K}}$ и $\lambda_{0,1}^{\mathsf{H}}$ – длины волн, соответствующие значению au = 0,1 · aumax на коротко- и длинноволновой границах рабочей полосы;

 $\Delta\lambda_{0,5}$ – спектральная ширина рабочей полосы пропускания на уровне $\mathcal{T}=0,5\cdot\mathcal{T}_{\text{max}}$ (полуширина рабочей полосы пропускания), определяемая как $\Delta\lambda_{0,5}=\lambda_{0,5}^{\mathbf{q}}-\lambda_{0,5}^{\mathbf{K}}$;

 $\Delta\lambda_{0,1}$ - спектральная ширина рабочей полосы пропускания на уровне $\mathcal{T}=0,1\cdot\mathcal{T}_{\text{max}}$, определяемая как $\Delta\lambda_{0,1}=\lambda_{0,1}^{\text{R}}-\lambda_{0,1}^{\text{K}}$;


 $\lambda_{\text{КП}}$ – параметр, определяемый как значение длины волны, соответствующей значению τ = 10 % на коротковолновом фронте побочной полосы пропускания вне области действия (в части обеспечения высокого отражения) диэлектрических зеркал;

 $\lambda_{\text{дп}}$ – параметр, определяемый как значение длины волны, соответствующей значению τ = 10 % на длинноволновом фронте побочной полосы пропускания вне области действия (в части обеспечения высокого отражения) диэлектрических зеркал;

 $T_{\text{K\Phi}}$ – значение коэффициента пропускания в заданном нерабочем коротковолновом участке спектра (фон). Задается в виде предельно допустимого среднего арифметического значения коэффициента пропускания в спектральном диапапзоне (1,1 · $\lambda_{\text{K\Pi}}$ - 0,9 · $\lambda_{0,1}^{\text{K}}$);

 $T_{\text{д}\Phi}^-$ значение коэффициента пропускания в заданном нерабочем длинноволновом участке спектра (фон). Задается в виде предельно допустимого среднего арифметического значения коэффициента пропускания в спектральном диапапзоне (1,1 · $\lambda_{0,1}^{\text{D}}$ - 0,9 · $\lambda_{\text{Д}\Pi}$).

Параметры спектральных характеристик П (полосовых) фильтров

Обозначение	Обозначение	Буквенное обозначение параметра, норма параметра, единица измерения						
	спектрального	λ _{CP} , мкм	$ au_{\mathrm{CP}},$ %, не менее	Δλ _{0,5} , мкм	Δλ _{0,1} , мкм	λ _{кп} , мкм, не более	λ _{дП} , мкм, не менее	$ au_{{ m K}\Phi}, au_{{ m Д}\Phi}, \ %, \ { m He}$ более
A =	1	2,4 4,5	80	0,65 3,0	1,3 4,5		3,5	0.5
А, Б	2	4,5 12,0	75	1,2 6,0	2,0 7,5	1,0	6,0	0,5
В	-	7,0 13,0	70	2,0 5,0	3,0 8,0		9,0	1,0

Примечание: - В условном обозначении при заказе указывают:

- конкретные значения $\lambda_{\text{CP}}, \ \Delta\lambda_{0.5}, \ \Delta\lambda_{0.1}$ из диапазонов, указанных в таблице;
- значения допускаемых отклонений $\lambda_{\rm CP},~\Delta\lambda_{0,5},~\Delta\lambda_{0,1}$ (мкм), требуемые потребителю.

 $\lambda_{\rm CP}$ – длина волны центра рабочей полосы пропускания, определяемая как $\lambda_{\rm CP}$ = ($\lambda_{0.5}^{\rm K}$ + $\lambda_{0.5}^{\rm H}$) / 2;

 au_{CP} - среднее значение коэффициента пропускания в рабочей полосе пропускания, определяемое как среднее арифметическое значение коэффициента пропускания в диапазоне длин волн $\lambda_{0,8}^{\text{K}}$ и $\lambda_{0,8}^{\text{D}}$, соответствующих значениям $T = 0.8 \cdot T_{\text{max}}$ на коротко- и длинноволновой границах рабочей полосы;

 $\lambda_{0,5}^{K}$ и $\lambda_{0,5}^{H}$ – длины волн, соответствующие значению τ = 0,5 · τ_{max} на коротко- и длинноволновой границах рабочей полосы;

 $\lambda_{0,1}^{K}$ и $\lambda_{0,1}^{R}$ – длины волн, соответствующие значению τ = 0,1 · τ_{max} на коротко- и длинноволновой границах рабочей полосы;

 $\Delta\lambda_{0,5}$ - спектральная ширина рабочей полосы пропускания на уровне au = 0,5 · aumax (полуширина рабочей

полосы пропускания), определяемая как $\Delta\lambda_{0,5}=\lambda_{0,5}^{\mathbf{H}}-\lambda_{0,5}^{\mathbf{K}};$ $\Delta\lambda_{0,1}$ – спектральная ширина рабочей полосы пропускания на уровне $\mathcal{T}=0,1$ · \mathcal{T}_{max} , определяемая как $\Delta\lambda_{0,1}=\lambda_{0,1}^{\mathbf{H}}-\lambda_{0,1}^{\mathbf{K}};$

 $\lambda_{\mathsf{K}\Pi}$ – параметр, определяемый как значение длины волны, соответствующей значению au = 10 % на $\,$ коротковолновом фронте побочной полосы пропускания вне области действия (в части обеспечения высокого отражения) диэлектрических зеркал;

 $\lambda_{ exttt{D}\Pi}$ – параметр, определяемый как значение длины волны, соответствующей значению au = 10 % на длинноволновом фронте побочной полосы пропускания вне области действия (в части обеспечения высокого отражения) диэлектрических зеркал;

 $au_{\mathsf{K}\Phi}$ – значение коэффициента пропускания в заданном нерабочем коротковолновом участке спектра (фон). Задается в виде предельно допустимого среднего арифметического значения коэффициента пропускания в спектральном диапапзоне (1,1 \cdot $\lambda_{\text{K\Pi}}$ - 0,9 \cdot $\lambda_{0,1}^{\text{K}}$);

 $au_{ extsf{D}\Phi}^-$ значение коэффициента пропускания в заданном нерабочем длинноволновом участке спектра (фон). Задаётся в виде предельно допустимого среднего арифметического значения коэффициента пропускания в спектральном диапапзоне (1,1 · $\lambda_{0,1}^{A}$ - 0,9 · $\lambda_{Д\Pi}$).

E-mail: 5526057@giricond.ru www.giricond.ru Тел.: (812) 247-14-50 Обозначение при заказе:

$$\frac{\Phi \text{ильтр}}{(1)} \frac{\Phi \text{OИ-1}}{(2)} - \frac{\text{БK}}{(3)} - \frac{\text{A}}{(4)} + \frac{1}{(5)} - \frac{2 \text{ мкм}}{(6)} - \frac{... \text{ мкм}}{(7)} - \frac{3,5 \text{ мкм}}{(8)} - \frac{... \text{ мкм}}{(9)} - \frac{2,5 \text{ мм}}{(26)} - \frac{... \text{ мм}}{(27)} \frac{\text{ТЦАФ.755410.001ТУ}}{(37)}$$

$$\frac{\Phi \text{ИЛЬТР}}{(1)} \frac{\Phi \text{ОИ-1}}{(2)} - \frac{\text{БД}}{(3)} - \frac{\text{Б}}{(4)} + \frac{1}{(5)} - \frac{3 \text{ мкм}}{(10)} - \frac{... \text{ мкм}}{(11)} - \frac{2 \text{ мкм}}{(12)} - \frac{... \text{ мкм}}{(13)} - \frac{5 \text{ мм}}{(28)} - \frac{... \text{ мм}}{(29)} - \frac{0,35 \text{ мм}}{(30)} - \frac{... \text{ мм}}{(31)} + \frac{\text{ТЦАФ.755410.001TY}}{(37)}$$

$$\frac{\Phi \text{ИЛЬТР}}{(1)} \frac{\Phi \text{ОИ-1}}{(2)} - \frac{\text{У}}{(3)} - \frac{\text{B}}{(4)} - \frac{7 \text{ мкм}}{(14)} - \frac{\dots \text{ мкм}}{(15)} - \frac{0,1 \text{ мкм}}{(16)} - \frac{\dots \text{ мкм}}{(17)} - \frac{0,2 \text{ мкм}}{(18)} - \frac{\dots \text{ мкм}}{(19)} - \frac{12,7 \text{ мм}}{(32)} - \frac{\dots \text{ мм}}{(33)} - \frac{\dots \text{ мм}}{(34)} - \frac{4,5 \text{ мм}}{(36)} - \frac{4,5 \text{ мм}}{(36)} - \frac{12,7 \text{ mm}}{(36)} - \frac{12,7 \text{ mm$$

ТЦАФ.755410.001ТУ

(37)

$$\frac{\Phi \text{ильтр}}{(1)} \frac{\Phi \text{OИ-1}}{(2)} - \frac{\Pi}{(3)} - \frac{\Lambda}{(4)} - \frac{1}{(5)} - \frac{2,5 \text{ мкм}}{(20)} - \frac{... \text{ мкм}}{(21)} - \frac{0,65 \text{ мкм}}{(22)} - \frac{... \text{ мкм}}{(23)} - \frac{1,3 \text{ мкм}}{(24)} - \frac{... \text{ мкм}}{(25)} - \frac{50 \text{ мм}}{(26)} - \frac{... \text{ мм}}{(27)} \frac{\text{ТЦАФ.755410.001TY}}{(37)}$$

- 1) Слово «Фильтр»;
- 2) сокращенное обозначение;
- 3) тип фильтра;
- 4) конструктивное исполнение;
- 5) обозначение спектрального диапазона (конструктивные исполнения А и Б);
- 6) значение $\lambda_{\Gamma P}^{\kappa}$ для БК фильтра;
- 7) значение допускаемого отклонения $\lambda_{\Gamma P}^{\kappa}$ (значение устанавливает потребитель);
- 8) значение λ_{Π} для БК фильтра;
- 9) значение допускаемого отклонения $\lambda_{\text{Д}}$ (значение устанавливает потребитель);
- 10) значение $\lambda_{\Gamma P}^{\kappa}$ для БД фильтра;
- 11) значение допускаемого отклонения $\lambda_{\Gamma P}^{\kappa}$ (значение устанавливает потребитель);
- 12) значение λ_{κ} для БД фильтра;
- 13) значение допускаемого отклонения λ_{κ} (значение устанавливает потребитель);
- 14) значение λ_{max} и λ_{CP} для У фильтра;
- 15) значение допускаемого отклонения λ_{max} и λ_{CP} (значение устанавливает потребитель);
- 16) значение $\Delta \lambda_{0,5}$ для У фильтра;
- 17) значение допускаемого отклонения $\Delta\lambda_{0.5}$ (значение устанавливает потребитель);
- 18) значение $\Delta \lambda_{0.1}$ для У фильтра;
- 19) значение допускаемого отклонения $\Delta \lambda_{0.1}$ (значение устанавливает потребитель);
- 20) значение λ_{CP} для П фильтра;
- 21) значение допускаемого отклонения λ_{CP} (значение устанавливает потребитель);
- 22) значение $\Delta \lambda_{0.5}$ для П фильтра;
- 23) значение допускаемого отклонения $\Delta \lambda_{0.5}$ (значение устанавливает потребитель);
- 24) значение $\Delta \lambda_{0.1}$ для Π фильтра;
- 25) значение допускаемого отклонения $\Delta \lambda_{0.1}$ (значение устанавливает потребитель);
- 26) значение размера L (конструктивное исполнение A);
- 27) значение допускаемого отклонения размера L (значение устанавливает потребитель);
- 28) значение размера D (конструктивное исполнение Б);
- 29) значение допускаемого отклонения размера D (значение устанавливает потребитель);
- 30) значение размера S (конструктивное исполнение Б);
- 31) значение допускаемого отклонения размера S (значение устанавливает потребитель);
- 32) значение размера D₁ (конструктивное исполнение В);
- 33) значение допускаемого отклонения размера D₁ (значение устанавливает потребитель);
- 34) значение размера D₂ (конструктивное исполнение В);
- значение допускаемого отклонения размера D₂ (значение устанавливает потребитель);
- значение размера S (конструктивное исполнение B);
- 37) обозначение ТУ.